Immobilizing (or covalently attaching) proteins, lipids, carbohydrates, and other polymers on biopolymer surfaces is incredibly important for a number of reasons. Want your surface to be hydrophobic or hydrophilic? Want to attach interesting fluorescent molecules on a sensor surface? There are a ton of possibilities! One of the most common uses for biopolymer surface functionalization is Surface Plasmon Resonance. Here, a protein is covalently attached to a gold surface and several different ligands are flowed past the protein-surface. Researchers can then study the binding and unbinding of ligands to proteins on the gold surface and determine on/off rates etc.
For more information on methods for protein bioconjugation to gold, take a look at our article. We’ve also discussed techniques for bioconjugation to surfaces in a related article.
Take a look at the image below:
Another reason for immobilization of materials on a biopolymer surface might be to make it more hydrophilic. For a long time we have known that functionalizing long hydrophilic polymers on a surface can help prevent clotting and protein binding. This is one of the key methods for improving the blood compatibility of biomaterials. Without proteins to bind the surface and subsequent activation of platelets, biomaterials can be used inside the body for longer periods of time and they can even be implanted!
Curious about how you can tell if your protein attached to the surface? Label your protein with a fluorescent probe with our method!
A common method for modifying the surface of a carboxyl-containing polymer with protein, is to attach the N-Terminus of the protein onto the surface. Here is a simple representation of the chemistry:
Materials for EDC/NHS Surface Immobilization of Proteins
Step-by-Step Biopolymer Functionalization Methodology
You can also utilize protein conjugation chemistry to impart unique tags onto your proteins that make them easier to functionalize onto surfaces.
Additionally, you can target specific residues on proteins like methionine residues for bioconjugation.
What is Protein-Protein Conjugation and How Is It Done? Conjugation techniques depend on two interrelated…
We discuss different methods for the bioconjugation of carbon nanotubes including amine, aldehyde and carboxyl…
We discuss orthogonal bioconjugation techniques and methods such as SPAAC & tetrazine ligation, as well…
We discuss different methods for bioconjugation to surfaces of polymers, DNA, and proteins such as…
We discuss different methionine selective bioconjugation techniques utilized for protein antibody, polymer, or surface conjugation…
We discuss methods for protein and antibody bioconjugation to gold including theory, alternative approaches, and…